hypotrochoid - definição. O que é hypotrochoid. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é hypotrochoid - definição


Hypotrochoid         
·noun A curve, traced by a point in the radius, or radius produced, of a circle which rolls upon the concave side of a fixed circle. ·see Hypocycloid, Epicycloid, and Trochoid.

Wikipédia

Hypotrochoid

In geometry, a hypotrochoid is a roulette traced by a point attached to a circle of radius r rolling around the inside of a fixed circle of radius R, where the point is a distance d from the center of the interior circle.

The parametric equations for a hypotrochoid are:

x ( θ ) = ( R r ) cos θ + d cos ( R r r θ ) y ( θ ) = ( R r ) sin θ d sin ( R r r θ ) {\displaystyle {\begin{aligned}&x(\theta )=(R-r)\cos \theta +d\cos \left({R-r \over r}\theta \right)\\&y(\theta )=(R-r)\sin \theta -d\sin \left({R-r \over r}\theta \right)\end{aligned}}}

where θ is the angle formed by the horizontal and the center of the rolling circle (these are not polar equations because θ is not the polar angle). When measured in radian, θ takes values from 0 to 2 π × LCM ( r , R ) R {\displaystyle 2\pi \times {\tfrac {\operatorname {LCM} (r,R)}{R}}} (where LCM is least common multiple).

Special cases include the hypocycloid with d = r and the ellipse with R = 2r and dr. The eccentricity of the ellipse is

e = 2 d / r 1 + ( d / r ) {\displaystyle e={\frac {2{\sqrt {d/r}}}{1+(d/r)}}}

becoming 1 when d = r {\displaystyle d=r} (see Tusi couple).

The classic Spirograph toy traces out hypotrochoid and epitrochoid curves.

Hypotrochoids describe the support of the eigenvalues of some random matrices with cyclic correlations